Learning and Multiagent Reasoning for Autonomous Agents
نویسنده
چکیده
One goal of Artificial Intelligence is to enable the creation of robust, fully autonomous agents that can coexist with us in the real world. Such agents will need to be able to learn, both in order to correct and circumvent their inevitable imperfections, and to keep up with a dynamically changing world. They will also need to be able to interact with one another, whether they share common goals, they pursue independent goals, or their goals are in direct conflict. This paper presents current research directions in machine learning, multiagent reasoning, and robotics, and advocates their unification within concrete application domains. Ideally, new theoretical results in each separate area will inform practical implementations while innovations from concrete multiagent applications will drive new theoretical pursuits, and together these synergistic research approaches will lead us towards the goal of fully autonomous agents.
منابع مشابه
A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملLearning and Multiagent Reasoning for Autonomous Agents IJCAI-07 Computers and Thought Paper
One goal of Artificial Intelligence is to enable the creation of robust, fully autonomous agents that can coexist with us in the real world. Such agents will need to be able to learn, both in order to correct and circumvent their inevitable imperfections, and to keep up with a dynamically changing world. They will also need to be able to interact with one another, whether they share common goal...
متن کاملA Decision-Theoretic Approach to Coordinating Multi-agent Interactions
We describe a decision-theoretic method that an autonomous agent can use to model multiagent situations and behave rationally based on its model. Our approach, which we call the Recursive Modeling Method, explicitly accounts for the recursive nature of multiagent reasoning. Our method lets an agent recursively model another agent's decisions based on probabilistic views of how that agent percei...
متن کاملTravelPlan: A MultiAgent System to Solve Web Electronic Travel Problems
ABSTRACT This paper presents TravelPlan, a multiagent ar hite ture to o-operative work between di erent elements (human and/or software) whose main goal is to re ommend useful solutions in the ele troni tourism domain to system users. The system uses di erent types of intelligent autonomous agents whose main hara teristi s are ooperation, negotiation, learning, planning and knowledge sharing. T...
متن کاملCooperative Multiagent Learning
Cooperation and learning are two ways in which an agent can improve its performance. Cooperative Multiagent Learning is a framework to analyze the tradeoff between cooperation and learning in multiagent systems. We focus on multiagent systems where individual agents are capable of solving problems and learning using CBR (Case-based Reasoning). We present several collaboration strategies for age...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007